본문 바로가기
ML&DATA/모두를 위한 딥러닝

실습

by sun__ 2020. 7. 13.

설명x.

 

<mnist>

import numpy as np
import tensorflow as tf
tf.random.set_seed(777)

mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

#모델 정의
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test, y_test)

 

 

'ML&DATA > 모두를 위한 딥러닝' 카테고리의 다른 글

application & tips  (0) 2020.07.13
multinomial classification  (0) 2020.07.12
binary classification  (0) 2020.07.10
simple linear regression (단순 선형 회귀)  (0) 2020.07.08
용어/개념  (0) 2020.07.08