설명x.
<mnist>
import numpy as np
import tensorflow as tf
tf.random.set_seed(777)
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
#모델 정의
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
'ML&DATA > 모두를 위한 딥러닝' 카테고리의 다른 글
application & tips (0) | 2020.07.13 |
---|---|
multinomial classification (0) | 2020.07.12 |
binary classification (0) | 2020.07.10 |
simple linear regression (단순 선형 회귀) (0) | 2020.07.08 |
용어/개념 (0) | 2020.07.08 |